CONTEST #2.

SOLUTIONS

2 - 1. 38 We solve the equation 5N + 10(85 - N) = 660 to obtain -5N = -190, so N = 38.

2 - **2.** <u>12</u> Let x represent Sage's age. Then 3x represents her father's age and 3x - 3 represents her mother's age. When she was born, her parents were 2x and 2x - 3 years old. Thus, we solve 4x - 3 = 45 to obtain x = 12.

2 - 3. 6 We solve $s^3 = 6s^2$ to obtain s = 6.

2 - 4. $\boxed{2\sqrt{34}}$ If we drop an altitude from C to \overline{AB} , we see that $\sin 60^\circ = \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{BC} \Rightarrow BC = 6$. Imagine a line through C parallel to the two parallel lines and check out pairs of same-side interior angles... $m \angle BCD = 60^\circ + 30^\circ = 90^\circ$, so $BD = \sqrt{6^2 + 10^2} = \sqrt{136} = 2\sqrt{34}$.

2 - 5. $\boxed{\frac{1}{5}}$ There are $\frac{6!}{3!} = 120$ ways to arrange the six letters. Treating the three E's as a mega-letter, there are 4! = 24 ways to keep the three E's together. Thus, our probability is $\frac{24}{120} = \frac{1}{5}$.

2 - 6. $\boxed{-\frac{1}{2} < x < \frac{1}{2}}$ We note that if $x \ge \frac{1}{2}$, then the expression on the left side of the inequality is 4x. If $-\frac{1}{2} < x < \frac{1}{2}$, the expression on the left is equal to 1 - 2x + 2x + 1 = 2, which is greater than |4x| on the interval. If $x < -\frac{1}{2}$, the expression on the left is (1 - 2x) + (-2x - 1) = -4x, whose absolute value is the same as |4x| for those values of x. Thus, our interval of solution is $-\frac{1}{2} < \mathbf{x} < \frac{1}{2}$.

Author: George Reuter - coachreu@gmail.com - Reviewer: Michael Curry - currymath@gmail.com

www.mathmeets.com

T-1. For two acute angles A and B (measured in degrees), we have $\sin A + \sin B = \frac{\sqrt{8} + \sqrt{12}}{4}$

and $\sin A \cdot \sin B = \frac{\sqrt{96}}{16}$. If A < B, compute (A, B). **T-1Sol.** (45,60) The fractions we are adding or multiplying are $\frac{\sqrt{2}}{2}$ and $\frac{\sqrt{3}}{2}$, so our angles are 45° and 60°.

T-2. Adam and Beth, working together, paint $\frac{2}{3}$ of a wall. Carly, who could paint the whole wall by herself in 8 hours, joins Adam and Beth, and they three together finish painting the wall in 2 hours. Compute the total number of hours Beth spent painting the wall.

T-2Sol. 18 Let x be the number of hours Beth spent painting the first 2/3 of the wall, and A and B be the rates at which Adam and Beth paint. We have $\frac{x}{A} + \frac{x}{B} = \frac{2}{3} \rightarrow x \left(\frac{1}{A} + \frac{1}{B}\right) = \frac{2}{3}$. We also have $\frac{2}{A} + \frac{2}{B} + \frac{2}{8} = \frac{1}{3}$ from the information about the other third of the wall. This second equation tells us that $\frac{2}{A} + \frac{2}{B} = \frac{1}{12} \rightarrow \frac{1}{A} + \frac{1}{B} = \frac{1}{24}$. Substituting into the first equation, we have $x \cdot \frac{1}{24} = \frac{2}{3} \rightarrow x = 16$. Our answer is $16 + 2 = \mathbf{18}$ hours.

T-3. Compute the sum of the infinite series: $\frac{1}{3} + \frac{4}{9} + \frac{7}{27} + \frac{10}{81} + \frac{13}{243} + \cdots$ **T-3Sol.** $\frac{5}{4}$ Let the sum be represented by S. $S = \frac{1}{3} + \frac{4}{9} + \frac{7}{27} + \frac{10}{81} + \frac{13}{243} + \cdots$, so $\frac{S}{3} = \frac{1}{9} + \frac{4}{27} + \frac{7}{81} + \frac{10}{243} + \frac{13}{729} + \cdots$. Subtracting, we have $\frac{2S}{3} = \frac{1}{3} + \frac{3}{9} + \frac{3}{27} + \frac{3}{81} + \cdots$. Utilizing the formula for the sum of an infinite geometric series, we have $\frac{2S}{3} = \frac{1}{3} + \frac{\frac{1}{3}}{1 - \frac{1}{3}}$, so $\frac{2S}{3} = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$, and thus $S = \frac{5}{4}$.

Author: George Reuter - coachreu@gmail.com - Reviewer: Michael Curry - currymath@gmail.com

www.mathmeets.com