CONTEST \#2.

SOLUTIONS

2-1. 38 We solve the equation $5 N+10(85-N)=660$ to obtain $-5 N=-190$, so $N=\mathbf{3 8}$.
2-2. 12 Let x represent Sage's age. Then $3 x$ represents her father's age and $3 x-3$ represents her mother's age. When she was born, her parents were $2 x$ and $2 x-3$ years old. Thus, we solve $4 x-3=45$ to obtain $x=\mathbf{1 2}$.

2-3. 6 We solve $s^{3}=6 s^{2}$ to obtain $s=6$.
2-4. $\sqrt[{2 \sqrt{34}}]{ }$ If we drop an altitude from C to $\overline{A B}$, we see that $\sin 60^{\circ}=\frac{\sqrt{3}}{2}=\frac{3 \sqrt{3}}{B C} \Rightarrow B C=6$. Imagine a line through C parallel to the two parallel lines and check out pairs of same-side interior angles... $m \angle B C D=60^{\circ}+30^{\circ}=90^{\circ}$, so $B D=\sqrt{6^{2}+10^{2}}=\sqrt{136}=\mathbf{2} \sqrt{\mathbf{3 4}}$.

2-5. $\frac{1}{5}$ There are $\frac{6!}{3!}=120$ ways to arrange the six letters. Treating the three E's as a mega-letter, there are $4!=24$ ways to keep the three E's together. Thus, our probability is $\frac{24}{120}=\frac{1}{5}$.

2-6. $-\frac{1}{2}<x<\frac{1}{2}$ We note that if $x \geq \frac{1}{2}$, then the expression on the left side of the inequality is $4 x$. If $-\frac{1}{2}<x<\frac{1}{2}$, the expression on the left is equal to $1-2 x+2 x+1=2$, which is greater than $|4 x|$ on the interval. If $x<-\frac{1}{2}$, the expression on the left is $(1-2 x)+(-2 x-1)=-4 x$, whose absolute value is the same as $|4 x|$ for those values of x. Thus, our interval of solution is $-\frac{1}{2}<\mathrm{x}<\frac{1}{2}$.

T-1. For two acute angles A and B (measured in degrees), we have $\sin A+\sin B=\frac{\sqrt{8}+\sqrt{12}}{4}$ and $\sin A \cdot \sin B=\frac{\sqrt{96}}{16}$. If $A<B$, compute (A, B).
T-1Sol. $(45,60)$ The fractions we are adding or multiplying are $\frac{\sqrt{2}}{2}$ and $\frac{\sqrt{3}}{2}$, so our angles are 45° and 60°.

T-2. Adam and Beth, working together, paint $\frac{2}{3}$ of a wall. Carly, who could paint the whole wall by herself in 8 hours, joins Adam and Beth, and they three together finish painting the wall in 2 hours. Compute the total number of hours Beth spent painting the wall.
T-2Sol. 18 Let x be the number of hours Beth spent painting the first $2 / 3$ of the wall, and A and B be the rates at which Adam and Beth paint. We have $\frac{x}{A}+\frac{x}{B}=\frac{2}{3} \rightarrow x\left(\frac{1}{A}+\frac{1}{B}\right)=\frac{2}{3}$. We also have $\frac{2}{A}+\frac{2}{B}+\frac{2}{8}=\frac{1}{3}$ from the information about the other third of the wall. This second equation tells us that $\frac{2}{A}+\frac{2}{B}=\frac{1}{12} \rightarrow \frac{1}{A}+\frac{1}{B}=\frac{1}{24}$. Substituting into the first equation, we have $x \cdot \frac{1}{24}=\frac{2}{3} \rightarrow x=16$. Our answer is $16+2=\mathbf{1 8}$ hours.

T-3. Compute the sum of the infinite series: $\frac{1}{3}+\frac{4}{9}+\frac{7}{27}+\frac{10}{81}+\frac{13}{243}+\cdots$
T-3Sol. $\frac{\mathbf{5}}{\mathbf{4}}$ Let the sum be represented by S. $S=\frac{1}{3}+\frac{4}{9}+\frac{7}{27}+\frac{10}{81}+\frac{13}{243}+\cdots$, so $\frac{S}{3}=\frac{1}{9}+\frac{4}{27}+\frac{7}{81}+\frac{10}{243}+\frac{13}{729}+\cdots$. Subtracting, we have $\frac{2 S}{3}=\frac{1}{3}+\frac{3}{9}+\frac{3}{27}+\frac{3}{81}+\cdots$. Utilizing the formula for the sum of an infinite geometric series, we have $\frac{2 S}{3}=\frac{1}{3}+\frac{\frac{1}{3}}{1-\frac{1}{3}}$, so $\frac{2 S}{3}=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}$, and thus $S=\frac{\mathbf{5}}{\mathbf{4}}$.

