CONTEST \#4.

SOLUTIONS

4-1. -1 Substituting yields $a^{2}+b=5$ and $a^{5}+b=239$. Subtracting, we have $a^{5}-a^{2}=234$, which factors as $a^{2}\left(a^{3}-1\right)=9 \cdot 26$, so $a^{2}=9$ and $a^{3}-1=26$. The value of a is 3 and the value of b is -4 . Thus, $a+b=3+(-4)=-\mathbf{1}$.

4-2. 30 Consider square A. There are 3 color choices for A, and therefore there are 2 color choices for E . As for B and D , they are either the same color or different colors. If B and D are different colors, then there are 2 choices for B and 1 for D , and all that must be done now is to ascertain the number of choices for C . If B, D, and E are all different colors, there is no possible choice for either A or C. If, however, two of the three are the same, then there is 1 choice for C . Thus, if B and D are different colors, there are $3 \cdot 2 \cdot 2 \cdot 1 \cdot 1=12$ colorings. Now, consider the possibility that B and D are the same color. In this case, there are 2 choices for B and 1 for D. If B, D, and E are the same, then there are 2 choices for C (the remaining color or the color used for A) and therefore $3 \cdot 2 \cdot 2 \cdot 1 \cdot 1=12$ colorings. If, on the other hand, B and E are different colors, then there is only 1 choice for C and therefore $3 \cdot 2 \cdot 1 \cdot 1 \cdot 1=6$ colorings. The number of distinct possible colorings is $12+12+6=\mathbf{3 0}$.

4-3. 14 Use the Power of a Point Theorem to find $O C=r . A E \cdot A C=A D \cdot A B$, so $4 \cdot(2 r+4)=8 \cdot 16$ implies $r=\frac{32-4}{2}=\mathbf{1 4}$.

4-4. 9 The longer side is $\overline{A D}$, since the shorter altitude is drawn to it; let $A D=x$ and $A B=15-x$. Then, finding the area of the parallelogram in two different ways, equate $4 x=6(15-x)$. Solve to obtain $4 x=90-6 x \rightarrow \mathbf{x}=\mathbf{9}$.

4-5. $\mathbf{y}=\mathbf{3} \sin \frac{\pi}{\mathbf{1 2}} \mathbf{x}+\mathbf{5}$ The value of D is halfway between 8 and 2 , so $D=\frac{8+2}{2}=5$. The value of A is the vertical distance between the maximum and the midline, so $A=8-5=3$. The period of the graph is $2 \cdot(18-6)=24$, so $B=\frac{2 \pi}{24}=\frac{\pi}{12}$. The equation of the graph is $y=3 \sin \frac{\pi}{12} x+5$.

4-6. (3, -4) Substituting x - and y-coordinates into the general equation gives us three equations: $a+b+c=4,4 a+2 b+c=-2$, and $16 a+4 b+c=-2$. Subtracting the first two equations yields $3 a+b=-6$. Subtracting the second two equations yields $12 a+2 b=0 \rightarrow 6 a+b=0$. Subtracting these yields $3 a=6 \rightarrow a=2 \rightarrow b=-12 \rightarrow c=14$. The equation is $y=2 x^{2}-12 x+14$, whose vertex is at $(\mathbf{3},-\mathbf{4})$.

T-1. Compute all two-digit numbers such that the number is equal to twice the sum of its digits. T-1Sol. 18 Let the number be $A B$. Then, $10 A+B=2(A+B) \rightarrow 8 A=B$. The only number that satisfies this is $\mathbf{1 8}$.

T-2. There are two base-10 numbers for which the base-9 representation is $A B C$ and the base-11 representation is $C B A$. Compute the sum of these two base-10 numbers in base 10.
T-2Sol. 735 The first sentence of the problem implies $81 A+9 B+C=121 C+11 B+A$, which in turn implies $80 A-120 C=2 B \rightarrow 20(2 A-3 C)=B$. Since B is a multiple of 20 but $B<9$, $B=0$. Therefore, $2 A-3 C=0$. Since both A and C are less than 9 , the only solutions are $A=3$ and $C=2$ or $A=6$ and $C=4$. The two base- 9 numbers are 302 and 604 , which convert to $3 \cdot 81+2=245$ and $6 \cdot 81+4=490$. Their sum is $\mathbf{7 3 5}$.

T-3. Compute the values of x that solve the following equation: $(x+5)^{3}+(2 x+4)^{3}=(3 x+9)^{3}$ T-3Sol. $\{-\mathbf{5},-\mathbf{3},-\mathbf{2}\}$ This equation is of the form $A^{3}+B^{3}=(A+B)^{3}$, which has solutions only if $A=0$ or $B=0$ or $A+B=0$. Therefore, instead of expanding the brackets and proceeding to solve a difficult cubic, instead solve three linear equations to find $x+5=0 \rightarrow x=-5$, $2 x+4=0 \rightarrow x=-2$, and $3 x+9=0 \rightarrow x=-3$. The solutions are $\{-\mathbf{5},-\mathbf{3},-\mathbf{2}\}$.

