Naming and Drawing Alkenes Worksheet and Key

1) Draw and name the *cis* and *trans* condensed structure of:

cis condensed structure:	trans condensed structure:
name:	name:

- 2. Name the following alkenes (include cis- or trans- for the alkenes that when appropriate)
- a)

Name:

b)

$$CH_2 = CHCH_2CH_2CH_2CH_2CH_3$$

Name:

c)

$$\begin{array}{c} \operatorname{CH_3CH} \operatorname{CH_2CH_2} \operatorname{CH} = \operatorname{CHCH_2CH_3} \\ | \\ \operatorname{CH_3} \end{array}$$

Name:

Be careful to correctly identify carbon #1.....

d)

$$CH_3 \setminus C = C \setminus H_3$$

Name:

e)		
$CH_3CH_2CH_2CH_2$ $C=C$	Н	
/	CH ₂ CH ₂ CH ₃	Name:
f)		
		Name:

3. Draw the line bond, condensed, and skeletal structure of the following alkenes.

a) 1-hexene

line-bond structure	condensed structure	skeletal structure

b) 2-methyl-4-isopropyl-1-nonene

condensed structure	skeletal structure
	condensed structure

c) cis-2-hexene

line-bond structure	condensed structure	skeletal structure

line-bond structure	condensed structure	skeletal structure

e) cis-2-methyl-3-hexene

line-bond structure	condensed structure	skeletal structure

Alkene WS II

Name:	

1. Ethene is a gas with a slightly sweet odor; certain plants produce it naturally. It is found in petroleum and natural gas. It is one of the most important organic compounds in the chemical industry. It is used in the production of alcohol, solvents, plastics, antifreeze, detergents, synthetics, and it is used to hasten the ripening of fruit.

Write the formula for ethene and draw its structure.

- 2. Given the structural formulas, name the following compounds.
 - a. CH3-CH=CH2
 - b. CH3-CH=CH-CH3
 - c. CH3-CH2-CH2-CH=CH-CH3
- 3. Draw the structural formulas for the following compounds.
 - a. 2-methyl-3-heptene
 - b. 2-pentene
 - c. 2,3-dimethyl-1-butene
 - d. 2-methyl-2-butene
- 4. Name the following branched alkene.

ď	tra	ns-2-	pen	tene
u,	, cru	113 2	$\rho c \cdots$	CCIIC

line-bond structure	condensed structure	skeletal structure

e) cis-2-methyl-3-hexene

line-bond structure	condensed structure	skeletal structure

1) Draw and name the *cis* and *trans* condensed structure of:

cis condensed structure:	trans condensed structure:
$C = C $ CH_2CH_3 H	CH_3 $C = C$ CH_2CH_3
name: cis-2-pentene	name: trans-2-pentene

- 2. Name the following alkenes (include cis- or trans- for the alkenes that when appropriate)
- a)

Name: 1- pentene

b)

$$CH_2 = CHCH_2CH_2CH_2CH_2CH_3$$

Name: <u>1- heptene</u>

c)

$$CH_3CH CH_2CH_2 CH = CH CH_2CH_3$$

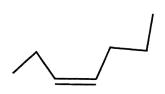
$$CH_3$$

$$CH_3$$

Name: 7- methyl-3-octene

Note: Carbon #1 is the carbon nearest to the double bond

d)


$$CH_3 \setminus C = C \setminus H$$

Name: <u>cis-2-butene</u>

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \\ \text{H} \end{array} \\ \begin{array}{c} \text{C} = \text{C} \\ \\ \text{CH}_2\text{CH}_2\text{CH}_2\\ \end{array}$$

Name: <u>trans-4-nonene</u>

f)

Name: <u>cis-3-heptene</u>

3. Draw the line bond, condensed, and skeletal structure of the following alkenes.

a) 1-hexene

line-bond structure	condensed structure	skeletal structure
	$CH_2 = CHCH_2CH_2CH_2CH_3$	

b) 2-methyl-4-isopropyl-1-nonene

line-bond structure	condensed structure	skeletal structure
H	CH ₃ CH ₂ = CCH ₂ CHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CHCH ₃	Note: There are several correct ways to draw many of these skeletal structures.

c) cis-2-hexene

line-bond structure	condensed structure	skeletal structure
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CH_3 C = C H_2CH_2CH_3$ H	

d) trans-2-pentene

line-bond structure	condensed structure	skeletal structure
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH_3 $C = C$ CH_2CH_3	

e) cis-2-methyl-3-hexene

line-bond structure	condensed structure	skeletal structure
H H—C—H H—C—H H—H—H—H H—H—H—H H—H—H H—H—H	CH_3 CH_3CH $C = C$ H	<u></u>